Structure Reports Online

ISSN 1600-5368

Guo-Yi Bai,^a Li-Gong Chen,^b* Yang Li,^b Xi-Long Yan,^b Peng Xing,^c Chuan-Ming Dong,^c Xue-Min Duan,^c Yue-Cheng Zhang^c and Feng-Yan Ge^c

^aCollege of Chemistry and Environmental Science, Hebei University, Hebei 071002, People's Republic of China, ^bSchool of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China, and College of Pharmaceuticals and Biotechnology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: baiguoyi@hotmail.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.002 Å R factor = 0.030 wR factor = 0.083 Data-to-parameter ratio = 9.1

For details of how these key indicators were automatically derived from the article, see http://iournals.iucr.org/e.

Acta Crystallographica Section E

The formation of the title compound, (S)-2-ammonio-1butanol (2R,3R)-tartrate, $C_4H_{12}NO^+ \cdot C_4H_5O_6^-$, the (S)-2amino-1-butanol molecule is converted to a cationic form containing a positively charged amino group, and the tartaric acid molecule to a mono- or half-ionized tartrate anion. The structure is stabilized by a three-dimensional network of hydrogen bonds.

(S)-2-Ammoniobutan-1-ol (2R,3R)-tartrate

Received 11 January 2005 Accepted 18 March 2005 Online 25 March 2005

Comment

The title compound, (I), is a (+)-tartrate salt of the (+)enantiomer of 2-amino-1-butanol. (S)-2-Amino-1-butanol is an intermediate in the synthesis of ethambutol hydrochloride, a widely used antituberculosis agent (Fadnavis et al., 1999). It has been reported (Singh, 1976; Bai et al., 2004) that the resolution of racemic 2-amino-1-butanol with (2R,3R)-tartaric acid is the best way to obtain the enantiomerically pure (S)-2amino-1-butanol which is needed for the ethambutol synthesis. (S)-2-Ammonio-1-butanol (2R,3R)-tartrate, (I), is thus a key intermediate in this process and its structure is reported here.

A view of (I) and its numbering scheme are illustrated in Fig. 1. In this crystal form, the (S)-2-amino-1-butanol molecule is in a cationic form, and has a positively charged amino group. The tartaric acid molecule is a semi-tartrate ion, with a neutral carboxylic acid group at one end and a negatively charged carboxylate group at the other. The bond distances and angles in the cation and the anion are normal within experimental error.

In the crystal structure, an extensive hydrogen-bond network is built up (Fig. 2 and Table 1) in which every OH and NH H atom is used at least once as a hydrogen-bond donor.

Experimental

The title compound was prepared according to the procedure of Bai et al. (2004). Colourless single crystals of (I) were grown by the slow evaporation of a solution in methanol and dioxane.

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

organic papers

Crystal data

 $C_4H_{12}NO^+ \cdot C_4H_5O_6^ M_r = 239.23$ Orthorhombic, P212121 a = 7.2959 (7) Å b = 9.4843 (9) Å c = 16.0204 (16) Å $V = 1108.56 (19) \text{ Å}^3$ Z = 4 $D_x = 1.433 \text{ Mg m}^{-3}$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 1997) $T_{\min} = 0.956, T_{\max} = 0.968$ 7492 measured reflections

Refinement

$w = 1/[\sigma^2(F_o^2) + (0.05)]$
+ 0.0747P]
where $P = (F_o^2 + 2$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O7-H7···O4 ⁱ	0.866 (10)	2.44 (2)	3.0647 (19)	130 (2)
$O7-H7$ ··· $O6^{i}$	0.866 (10)	1.892 (14)	2.7010 (18)	155 (2)
$N1 - H1C \cdot \cdot \cdot O3^{ii}$	0.890 (10)	2.364 (19)	2.8901 (19)	117.9 (16)
$N1 - H1C \cdots O1^{ii}$	0.890 (10)	1.997 (11)	2.860 (2)	162.8 (18)
$N1 - H1B \cdot \cdot \cdot O7^{ii}$	0.886 (10)	1.930 (10)	2.809 (2)	171 (2)
$N1-H1A\cdots O5^{iii}$	0.893 (10)	2.041 (12)	2.8970 (18)	160 (2)
$O4-H4\cdots O2^{iv}$	0.824 (10)	2.30 (2)	2.9879 (19)	142 (3)
$O3-H3\cdots O6^{v}$	0.853 (10)	1.831 (11)	2.6777 (18)	172 (2)
$O2{-}H2{\cdot}{\cdot}{\cdot}O5^{iv}$	0.861 (10)	1.649 (11)	2.5081 (17)	175 (3)
Symmetry codes: (i)) $1 - x, \frac{1}{2} + y, \frac{3}{2} - $	-z; (ii) $1-x, y$	$-\frac{1}{2},\frac{3}{2}-z;$ (iii) x	z = 1, y, z; (iv)

Mo $K\alpha$ radiation

reflections

 $\theta = 2.5 - 27.9^{\circ}$ $\mu=0.13~\mathrm{mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.018$ $\theta_{\rm max} = 27.9^{\circ}$

 $h = -9 \rightarrow 9$

 $k = -12 \rightarrow 12$

 $l = -21 \rightarrow 12$

Block colourless

 $0.32\,\times\,0.28\,\times\,0.26~\text{mm}$

1551 independent reflections

1441 reflections with $I > 2\sigma(I)$

 $= 1/[\sigma^2(F_o^2) + (0.0579P)^2]$ + 0.0747P] where $P = (F_0^2 + 2F_c^2)/3$

Cell parameters from 3501

 $x - \frac{1}{2}, \frac{1}{2} - y, 2 - z;$ (v) $2 - x, \frac{1}{2} + y, \frac{3}{2} - z.$

All N-H and O-H H atoms were initially located in a difference Fourier map and were then refined with N-H restrained to 0.88 (1) Å and O-H restrained to 0.86 (1) Å. Other H atoms were positioned geometrically (C-H = 0.96-0.98 Å) and refined using riding constraints, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Due to the absence of significant anomalous dispersion effects, Friedel-pair reflections were merged prior to refinement. The correct absolute configuration was used; it is known from the hand of the (2R,3R)-tartaric acid that was used in the preparation of the salt.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figure 1

The molecular structure of (I), with the atom-numbering scheme and 30% probability atomic displacement ellipsoids.

Figure 2

The packing of (I), viewed down the *a* axis, showing the hydrogen-bond interactions as dashed lines.

References

- Bai, G. Y., Chen, L. G., Xing, P., Li, Y. & Yan, X. L. (2004). Fine Chem. 21, 943-945.
- Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fadnavis, N. W., Sharfuddin, Mohd. & Vadivel, S. K. (1999). Tetrahedron Asymmetry, 10, 4495-4500.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Singh B. (1976). US Patent No. 3944617.