Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Guo-Yi Bai, ${ }^{\text {a }}$ Li-Gong Chen, ${ }^{\text {b }}{ }^{*}$ Yang Li, ${ }^{\text {b }}$ Xi-Long Yan, ${ }^{\text {b }}$ Peng Xing, ${ }^{c}$ Chuan-Ming Dong, ${ }^{c}$ Xue-Min Duan, ${ }^{\text {c }}$ Yue-Cheng Zhang ${ }^{c}$ and Feng-Yan Ge ${ }^{c}$
${ }^{\text {a }}$ College of Chemistry and Environmental Science, Hebei University, Hebei 071002, People's Republic of China, ${ }^{\mathbf{b}}$ School of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China, and ${ }^{\mathrm{c}}$ College of Pharmaceuticals and Biotechnology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: baiguoyi@hotmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.030$
ωR factor $=0.083$
Data-to-parameter ratio $=9.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(S)-2-Ammoniobutan-1-ol (2R,3R)-tartrate

The formation of the title compound, (S)-2-ammonio-1butanol $(2 R, 3 R)$-tartrate, $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{NO}^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{6}{ }^{-}$, the (S)-2-amino-1-butanol molecule is converted to a cationic form containing a positively charged amino group, and the tartaric acid molecule to a mono- or half-ionized tartrate anion. The structure is stabilized by a three-dimensional network of hydrogen bonds.

Comment

The title compound, (I), is a (+)-tartrate salt of the $(+)$ enantiomer of 2-amino-1-butanol. (S)-2-Amino-1-butanol is an intermediate in the synthesis of ethambutol hydrochloride, a widely used antituberculosis agent (Fadnavis et al., 1999). It has been reported (Singh, 1976; Bai et al., 2004) that the resolution of racemic 2 -amino-1-butanol with $(2 R, 3 R)$-tartaric acid is the best way to obtain the enantiomerically pure (S)-2-amino-1-butanol which is needed for the ethambutol synthesis. (S)-2-Ammonio-1-butanol $(2 R, 3 R)$-tartrate, (I), is thus a key intermediate in this process and its structure is reported here.

(I)

A view of (I) and its numbering scheme are illustrated in Fig. 1. In this crystal form, the (S)-2-amino-1-butanol molecule is in a cationic form, and has a positively charged amino group. The tartaric acid molecule is a semi-tartrate ion, with a neutral carboxylic acid group at one end and a negatively charged carboxylate group at the other. The bond distances and angles in the cation and the anion are normal within experimental error.

In the crystal structure, an extensive hydrogen-bond network is built up (Fig. 2 and Table 1) in which every OH and NH H atom is used at least once as a hydrogen-bond donor.

Experimental

The title compound was prepared according to the procedure of Bai et al. (2004). Colourless single crystals of (I) were grown by the slow evaporation of a solution in methanol and dioxane.

organic papers

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{NO}^{+} . \mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{6}{ }^{-}$
$M_{r}=239.23$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.2959$ (7) A
$b=9.4843$ (9) Å
$c=16.0204(16) \AA$
$V=1108.56(19) \AA^{3}$
$Z=4$
$D_{x}=1.433 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1997)
$T_{\min }=0.956, T_{\max }=0.968$
7492 measured reflections
Mo $K \alpha$ radiation
Cell parameters from 3501
reflections
$\theta=2.5-27.9^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.32 \times 0.28 \times 0.26 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.083$
$S=1.06$
1551 reflections
171 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

Symmetry codes: (i) $1-x, \frac{1}{2}+y, \frac{3}{2}-z$; (ii) $1-x, y-\frac{1}{2}, \frac{3}{2}-z$; (iii) $x-1, y, z$; (iv)
$x-\frac{1}{2}, \frac{1}{2}-y, 2-z$; (v) $2-x, \frac{1}{2}+y, \frac{3}{2}-z$.

All $\mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H} \mathrm{H}$ atoms were initially located in a difference Fourier map and were then refined with $\mathrm{N}-\mathrm{H}$ restrained to 0.88 (1) \AA And $\mathrm{O}-\mathrm{H}$ restrained to 0.86 (1) \AA. Other H atoms were positioned geometrically ($\mathrm{C}-\mathrm{H}=0.96-0.98 \AA$) and refined using riding constraints, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Due to the absence of significant anomalous dispersion effects, Friedel-pair reflections were merged prior to refinement. The correct absolute configuration was used; it is known from the hand of the $(2 R, 3 R)$-tartaric acid that was used in the preparation of the salt.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; programs) used to solve structure: SHELXS97 (Sheldrick, 1997); programs) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The molecular structure of (I), with the atom-numbering scheme and 30% probability atomic displacement ellipsoids.

Figure 2
The packing of (I), viewed down the a axis, showing the hydrogen-bond interactions as dashed lines.

References

Bai, G. Y., Chen, L. G., Xing, P., Li, Y. \& Yan, X. L. (2004). Fine Chem. 21, $943-$ 945.

Bruter (1997). SADABS, SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Fadnavis, N. W., Sharfuddin, Mohd. \& Vadivel, S. K. (1999). Tetrahedron Asymmetry, 10, 4495-4500.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Singh B. (1976). US Patent No. 3944617.

